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ABSTRACT 

 Pulsed laser deposition has been used to grow nanostructured BaCe0.85Y0.15O3-  films. 

The objective is to enhance protonic conduction by reduction of membrane thickness. Sintered 

samples and laser targets were prepared by sintering BaCe0.85Y0.15O3-  powders derived by solid 

state synthesis. Films 2 to 6 μm thick were deposited by KrF excimer laser on Si and porous 

Al2O3 substrates. Nanocrystalline films were fabricated at deposition temperatures of 600-800 
o
C 

at O2 pressure of 30 mTorr and laser fluence of 1.2 J/cm
2
. Films were characterized by x-ray 

diffraction, scanning electron microscopy and electrical impedance spectroscopy. Dense single 

phase BaCe0.85Y0.15O3-  films with a columnar growth morphology is observed, preferred crystal 

growth was found to be dependent upon deposition temperature and substrate type. Electrical 

conductivity of bulk samples produced by solid state sintering and thin film samples were 

measured over a temperature range of 100 
o
C to 900 

o
C in moist argon. Electrical conduction of 

the fabricated films was 1 to 4 orders of magnitude lower than the sintered bulk samples. With 

respect to the film growth direction, activation energy for electrical conduction is 3 times higher 

in the perpendicular direction than the parallel direction.  

 

INTRODUCTION 

Metal oxides with the perovskite structure are one of the most versatile classes of solid 

materials known. The structure can accommodate a wide range of cations and exhibit a variety of 

conductivity behavior ranging from predominantly electronic to purely ionic. Structure can 

accommodate distortions of the ideal cubic structure which provides the capability to incorporate 

cations of different sizes, tolerate vacancy formation and  tolerate atomic-scale intergrowths with 

other structural motif. High temperature protonic conduction in perovskite based ceramics, 

BaCeO3 and SrCeO3, was discovered by Iwahara et al.
1
 The general formula of these materials is 

ABO3, with A being a divalent earth alkaline element like Ba or Sr and B being a tetravalent 

element like Ti, Zr or Ce.  A trivalent dopant element like Y, Yb or Gd is partially substituted on 

the B site to enhance protonic transport. Charge neutrality is maintained by oxygen vacancies 

that can be filled by hydroxyl groups. These materials exhibit dominant proton transport at 

temperatures up around 800°C. Protonic transport have been investigated in numerous ABO3 

type compositions: A(B'xB"1-x)O3- , (A'xA"1-x)BO3- , (A'xA"1-x) (B'xB"1-x)O3- , A2(B'xB"1-x)O6-  

and A3(B'2+xB"2-x)O9- . High temperature protonic conductors (HTPC) have potential 

applications as electrolytes in fuel cells, gas sensors, gas purification systems and steam 

electrolyzers. 

Combining high protonic conductivity with thermodynamic stability is considered to be a 

key problem for HTPC materials for electrochemical applications. Hydrogen permeation rate for 

HTPC materials has been found to be inversely proportional to membrane thickness.
2
 Thus, 

reduction in HTPC membrane thickness is a practical approach to enhance the hydrogen 

permeation rate. To fabricate thin HTPC membranes on the order of 25 μm, they have to be 

supported using porous structures to provide mechanical strength. Successful processing of 

inexpensive membranes fabricated by particle deposition methods is hindered by high sintering 



temperatures that exceed 1500 
o
C.

3
 Reaction between the substrate and HTPC membrane is a 

processing problem. Pulsed laser deposition (PLD) is ideally suited to investigate protonic 

conductivity of perovskite films because the complex target composition can be reproduced at 

the substrate. The ease with which the stoichiometry of a multi-component system can be 

maintained in the deposited films is a significant advantage for PLD over other conventional 

physical vapour deposition techniques. PLD is being routinely used to deposit high quality, 

highly oriented thin films of multi-component oxide materials such as superconductors, 

ferroelectrics, ferrites, and biomaterials.
4
 In the present paper, we report the deposition of 

BaCe0.85Y0.15O3-  and (Ba0.9Sr0.1)(Ce0.75Y0.15Ti0.1)O3-  thin films by PLD. The films have been 

deposited on single crystal silicon wafers and porous Al2O3 substrates. The goal is to enhance 

protonic conduction by reduction of substrate thickness and utilization of nano-crystalline 

structures. Enhanced grain boundary conduction has been reported for nanocrystalline CeO2 and 

Y2O3 stabilized ZrO2 films.
5,6,7

 Deposition temperatures ranging from 600 to 800 °C produced 

nano-crystalline films with columnar growth morphology. The influence of the processing 

parameters on the crystalline property and electrical conductivity are presented with a tentative 

interpretation of the results. 

 

EXPERIMENTAL PROCEDURE 

High-density BaCe0.85Y0.15O3-  (BCY) and (Ba0.9Sr0.1)(Ce0.75Y0.15Ti0.1)O3-  targets/bulk 

samples were fabricated from powders synthesized by solid state reaction. Targets and bulk 

samples were sintered at 1650 
o
C. A previous paper describes the powder synthesis and sintering 

in more detail.
12

 BCY films were grown in a stainless steel high vacuum chamber evacuated to a 

base pressure of 1x 10
-6

 Torr using a turbo molecular pump. A 248-nm KrF excimer pulsed-laser 

operated at 4 Hz, with an energy density of 1.2 J/cm2 was utilized to grow BCY films. The target 

was rotated around its axis to ensure uniform ablation, mounted at an angle of 45 ° to the laser 

beam and target surface parallel to the substrate surface. The laser beam was focused to a beam 

size of 4.2 cm
2
 on the BCY target. Target to substrate distance varied from 100–130 mm. to 

attain sufficient interaction between the plasma plume and the process gas. Substrates were 

attached to a resistance heater; temperature was monitored by a thermocouple attached to the 

inner wall of the heater block. Substrate temperature was varied from 600 to 800 
o
C. Closed loop 

pressure control was used to maintain a chamber pressure of 30 mTorr using O2 as the process 

gas. Single-crystal silicon wafers and porous Al2O3 substrates were used for thin film deposition. 

Porous Al2O3 substrates were prepared by pressing Biakowski A-10 powder into discs and 

sintering the disc at 1100 
o
C for 1 hr. No etch procedures were used to remove the thin SiO2 

surface layer on the silicon wafers. BCY films, 2 - 6 μm, were obtained using deposition times of 

2 to 3 hrs. Film growth was approximately 0.05 nm/pulse. The as-grown films were cooled to 

room temperature at a  rate of 5 
o
C/min at 30 mTorr of O2. No failure of the BCY film was 

observed at this cooling rate. The crystalline structure of the as-deposited films was characterized 

by x-ray diffraction(XRD) and the microstructures examined by a scanning electron 

microscope(SEM). SEM and surface profilometer was used to determine the film thickness. The 

x-ray diffractometer was equipped with a Cu K  source with a wavelength of 0.1540 nm. The 

operating conditions were 45 KV and 40 mA. Scans were conducted at 3
o
/min with a sampling 

interval of 0.02
o
. 



Figure 1. BCY film geometries for   

EIS measurement. 
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The electrical properties as a function of the frequency of the material were determined with 

electrical impedance spectroscopy (EIS). Instrument combinations, Solartron 1260 impedance 

analyzer with Solartron 1287 electrochemical interface or Solartron 1260 with 1296 dielectric 

interface, were used to acquire impedance spectrum from 0.1 to 1 MHz. Platinum electrodes 

were used on bulk samples. Platinum paste (Heraeus CL11-5349) was applied to the sample 

surfaces and heat treated at 1050 
o
C for 1 hr. in air. Two thin film electrode geometries were 

utilized for EIS measurement as shown in figure 1. This provided a method to evaluate protonic 

conductivity parallel and perpendicular to the film growth direction. Bottom and top electrodes 

of Au/Pd film, ~ 100 nm, were deposited on silicon and BCY film by sputtering as illustrated in 

Figure 1. Non-coated areas on the samples were achieved 

by physical masking. Ag electrodes on porous Al2O3 

substrates were fabricated from Ag paste and heat treated 

at 300 
o
C for 0.5 hr. in air. No special proton loading 

treatment was performed prior to sample testing. 

The samples were placed into a ProboStat (NorECs 

Norwegian Electro Ceramics AS) test fixture that is 

equipped with a closed end alumina process tube. The 

vertically mounted process tube is aligned in a vertical 

tube furnace. Pt wire was adhered to electrodes by using Pt 

paste or Ag paste to complete the circuit connections. 

Atmosphere of argon or air was used in testing. Moist 

atmosphere was obtained by using a Nafion membrane. 

Measurement temperature ranged from room temperature 

to 900 
o
C, temperature control of the specimen was ±2°C. The EIS measurement was control by 

a computer using Labview software (National Instruments Corp.). The sample was allowed to 

equilibrate with temperature and atmosphere for 1 hr. before testing. 

 

RESULTS AND DISCUSSION 

The microstructure and properties of films are strongly dependent on the deposition 

process. The phase purity and the orientation of the deposited films were examined by x-ray 

diffraction. Analysis of XRD patterns showed that the orientation is dependent on deposition 

temperature and substrate material. No secondary phase formation was detected from XRD 

anaylsis for the deposited BCY films. In comparison, CeO2 formation has been observed for 

magnetron sputtered BaCe0.9Y0.1O3-  films as reported by He et al.
8
. Figure 2 shows the 

crystalline nature of (Ba0.9Sr0.1)(Ce0.75Y0.15Ti0.1)O3-  films deposited on silicon at room 

temperature, 600 
o
C and 800 

o
C. In Figure 2, Silicon peaks are identified, the unmarked peaks 

are (Ba0.9Sr0.1)(Ce0.75Y0.15Ti0.1)O3- . Amorphous film is produce at room temperature deposition. 

At 600 
0
C, the large peak at 41.45

o
 indicates a preferentially oriented film along the (400) plane.  

It is not unusual for polycrystalline films to exhibit a preferential orientation when deposited on 

single crystalline substrates. A more random crystal orientation is obtained at 800 
o
C. The Sr and 

Ti doping produces a XRD pattern that matches well with the ICCD data for BaCeO3-  (00-022-

0074). Figure 3 shows SEM photographs of (Ba0.9Sr0.1)(Ce0.75Y0.15Ti0.1)O3-  film grown at 800 
o
C. Figure 3B shows a fracture surface exposing the film cross-section. Growth of columnar 

grains is observed. The grains form a dense film. Nanosized grains are observed as shown in 

Figure 3A. Grains are rectangular shaped with a grain size  100 nm. 

 



10 20 30 40 50 60 70
0

200

400

600

800

1000

Si

Si

In
te
n
s
it
y

2

Si

(Ba
.9
Sr

.1
)(Ce

.75
Y
.15
Ti
.1
)O

3

800 
o
C

600 
o
C

RT

Figure 2. XRD patterns of 

(Ba0.9Sr0.1)(Ce0.75Y0.15Ti0.1)O3 films 

deposited on silicon substrates at rt, 600 
o
C 

and 800 
o
C at 30 mTorr of O2 

1 μm 0.5 μm 

A B 

Film 

Figure 3. Microstructure of (Ba0.9Sr0.1)(Ce0.75Y0.15Ti0.1)O3 

film deposited at 800 
o
C: (A) Film surface and (B) Film 

cross-section. 

 

Figure 4 shows the crystalline nature of BCY  films deposited on uncoated and Pt coated 

porous Al2O3 substrates at 800 
o
C. The coated substrate contained a Pt coating derived from Pt 

paste. The Al2O3 and Pt peaks are marked in Figure 4; the unmarked peaks are BCY. Both 

crystalline BCY films exhibit some preferential orientation as indicated by the large (400) peak. 

Figure 5 shows an SEM photograph of BCY film grown over a porous Al2O3 substrate at 800 
o
C. 

The SEM image is a fracture surface exposing the film cross section.. A distinct interface is 

observed between the BCY film and porous substrate. Dense films can be grown over the porous 

substrate. The crystalline BCY film has a columnar-like growth structure, the columns are not as 

well defined as observed for the growth structure on single crystal silicon. The rough surface 

topography and random Al2O3 crystal orientation can contribute to this specific growth structure. 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 The electrical properties of the bulk and thin film samples were measured by EIS. A 

series of representative spectra over the complete temperature range are shown on a Nyquist 

plots in Figure 6. A humidified argon atmosphere with a dew point of 25 
o
C was utilized for 
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Figure 4. XRD patterns of BaCe0.85Y0.15O3 

films deposited on porous Al2O3 substrate 

and  Pt coated substrate. 
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Figure 5. Microstructure of BaCe0.85Y0.15O3 film 

deposited on a porous Al2O3 substrate. 



testing. At low temperatures, two distinct impedance arcs were observed up to 150 
o
C. The small 

arcs at the higher frequencies can be attributed to the response of grain interiors, while the larger 

arcs can be attributed to the response of grain boundaries. Only one arc is observed at higher 

temperatures indicating that bulk and grain boundary responses are indistinguishable. As the 

temperature is increased, the resistance decreases and the time constants (RC) of the relaxations 

associated with polarizations are reduced shifting the arcs to higher frequencies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The complex impedance plots were 

analyzed by fitting with different equivalent 

circuits to obtain the resistance and 

capacitance of different arcs at different 

temperatures. The total conductivities were 

calculated from the total resistance. Sample 

geometry was used to determine the 

conductance. The equivalent circuit 

(RQ)Grain(RQ)GrainBoundary(R)electrode, where R = 

resistance and Q = constant phase element or 

CPE, was used to model the impedance 

spectrum. Circuit parameters for the 

equivalent circuits were obtained by using 

the least squares fitting routine in Zview 

(Scribner Aossiciates).  

 The apparent energies for electrical 

conduction, Q, were determined by plotting 

·T vs 1/RT using the Arrhenius equation of 

·T = A·exp(-Q/RT). Figure 7 is plot of the electrical conduction along with published results for 

bulk BaCe0.9Y0.1O3 and BaZr0.9Y0.1O3 film. The data in is fitted by least square analysis to 

provide the activation energies for electrical conduction. Table 1 lists the calculated Q values and 

pre-exponential values for samples measured. Published data for bulk BaCe0.9Y0.1O3
9,10
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Figure 6. Temperature dependent impedance spectrum of BaCe0.85Y0.15O3 film deposited on silicon at 

700 
o
C.  

Figure 7.  Conductivity plot comparing the results of 

this work with results from the published literature by 

Coors and Readey, Slade and Singh, and Kreuer.. 

0.10 0.15 0.20 0.25 0.30 0.35 0.40

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

10

100

Bulk

Film-Al
2
O

3

Film-Si-800 
o
C

Film-Si-700 
o
C

Film-Si-600 
o
C

 Coors

 Slade

 Kreuer

T
 (
S

 K
 c

m-1

)

1/RT (mol J
-1
)

T (
o
C)

300 100200800 600
 

400



BaZr0.9Y0.1O3 film
11

 is included in Table 1. The sintered sample exhibits the highest electrical 

conductivity compared to the PLD fabricated thin film samples. Sintered specimen shows an 

apparent change in electrical conduction behavior above and below 550 
o
C. A Q value of 100.3 

KJ/mol is calculated for the low temperature electrical conduction and 38.57 KJ/mol for the high 

temperature electrical conduction. 

The change in electrical conduction 

behavior cannot be elucidated from 

the present data.  XRD data from 

sintered specimens exhibit second 

phase formation during sintering as 

shown in Figure 8.
12

 The arrows in 

Figure 8 mark unidentified XRD 

peaks for BCY sintered at 1650 
o
C 

for 4 hrs. The powder XRD pattern 

is also shown to illustrate single 

phase material prior to sintering 

Phase formation appears to inhibit 

electrical conduction at low 

temperatures. Further work is needed 

to characterize the sintered samples. 

High temperature electrical conduction data is compatible with Slade and Singh’s data but an 

order of magnitude lower than Coors and Readey’s data. High temperature Q value is lower than 

reported for BaCe0.9Y0.1O3: 44.2 and 48.9 KJ/mol. 

 Figure 7 indicates that the electrical conduction for thin films exhibits dependence upon 

deposition temperature and type of substrate. Further 

work is needed to establish the dependence because 

the film thickness was not held constant. It has been 

shown in the literature that electrical conduction is 

also dependent upon film thickness. The BCY film 

thicknesses on the silicon wafers were 3.4 μm, 6.0 

μm and 6.0 μm for deposition temperatures of 600 
o
C, 700 

o
C and 800 

o
C, respectively. The results 

show that BCY film on silicon exhibits the highest 

electrical conduction at a deposition temperature of 

800 
o
C. Calculated activation energies are 33.4, 38.2 

and 29.9 KJ/mol for BCY films deposited at 600 
o
C, 

700 
o
C and 800 

o
C, respectively. These values are somewhat lowered than the bulk samples, 

38.57 – 48.96 KJ/mol. It should be noted that the low temperature data for BCY film deposited at 

700 
o
C indicates a change in conduction behavior below 150 

o
C. Activation energy of 9.2 KJ/mol 

was calculated for temperature regime of 48 
o
C to 150 

o
C. Further measurements are needed to 

confirm this result. 

 Conduction behavior of BCY film deposited upon a porous Al2O3 substrate exhibits 

different temperature dependence than the BCY films deposited on silicon as shown in Figure 7. 

The Q value for the BCY film on porous Al2O3 is 89.1 KJ/mol, this 2.3 to 2.9 times larger than 

the Q values for BCY films on silicon. However, the Q value complements the low temperature 

Q values for the bulk sample and Kreuer’s data on BaZr0.9Y0.1O3 film. It should be noted that the 

 Temp.    

(
o
C) 

Activation Energy 

(KJ/mol) 

Pre-exponential 

 (SK/cm) 
 BaCe0.85Y0.15O3  

 Bulk 
600 - 850 

400 - 550 

38.6 

100.3 

275.61 

2.15 x 10
6 

Porous Al2O3 150 - 600 89.1 1.06 x 10
5 

Si – 800 
o
C  100 - 500 33.4 3.86 

Si – 700 
o
C  

 
200 – 500 

25 - 150 

38.2 
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3.2 

1.8 x 10
-3 

Si – 600 
o
C  100 – 500 29.9 6.87 x 10

-3 

Coors/Readey  

BaCe0.9Y0.1O3 

100 - 900 44.24 9.2 x 10
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Kreuer 

BaZr0.9Y0.1O3 

350 - 900 93.1 4.88 x 10
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Slade/Singh 

BaCe0.9Y0.1O3 
600-900 48.9 1.38 x 10

3 

Table 1 

Activation Energy  

Powder 

Sintered 

Figure 8. XRD patterns of BCY sintered at 

1650 
o
C for 4 hrs. and synthesized BCY 

20 30 40 50 60 70

2

C
o
u
n
ts

Powder 

Sintered 



measured BCY film thickness is 3.4 μm and 6 μm for the BaZr0.9Y0.1O3 film. The measurement 

was made perpendicular to the film growth direction. It is not proven if the measurement  is 

directional dependent for films or a microstructural related variable that is controlling the low 

temperature electrical conduction. Since the Q values are similar between bulk and thin film, one 

might expect second phase material being the problem. 

 Based on the results, the electrical conductivity of the HTPC materials are not a singular 

function of composition and phase content. Further work is required to elucidate the 

microstructural contribution. Specifically, the contribution of grain versus grain boundary 

phases. Partitioning of cations between these phases impacts vacancy formation and ordering.  

Isolating these contributions will help devise a material with enhanced protonic conduction. 

 

SUMMARY 

 Temperature dependent protonic conduction was measured in BCY sintered samples and 

BCY films by EIS in a moist argon atmosphere. BCY films were fabricated on silicon wafers 

and porous Al2O3 substrates by PLD. Dense nano-crystalline films with columnar growth 

morphology were deposited at 600 
o
C to 800 

o
C at 30 mTorr of O2. Preferential growth 

orientation is favored at lower deposition temperatures. All BCY films exhibit a lower total 

electrical conduction than the sintered specimens by 1 to 4 orders of magnitude. Total electrical 

conductivity followed Arrhenius behavior. Activation energy for electrical conduction for the 

sintered specimens was 38.57 KJ/mol at temperatures 600 
o
C and 100.3 KJ/mol at temperatures 

<600 
o
C. BCY films deposited on silicon exhibit similar activation energy, 29.92 to 38.8 KJ/mol, 

to the high temperature bulk data. BCY film deposited on porous Al2O3 exhibited activation 

energy of 89.1 KJ/mol, similar to the Q value for low temperature bulk sample.  
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